Optimized Method for Preparation of IgG-Binding Bacterial Magnetic Nanoparticles

نویسندگان

  • Denis S. Grouzdev
  • Marina V. Dziuba
  • Denis V. Kurek
  • Alexander I. Ovchinnikov
  • Nadezhda A. Zhigalova
  • Boris B. Kuznetsov
  • Konstantin G. Skryabin
  • Joel M. Schnur
چکیده

In this study, the optimized method for designing IgG-binding magnetosomes based on integration of IgG-binding fusion proteins into magnetosome membrane in vitro is presented. Fusion proteins Mbb and Mistbb consisting of magnetosome membrane protein MamC and membrane associating protein Mistic from Bacillus subtilis as anchors and BB-domains of Staphylococcus aureus protein A as IgG-binding region were used. With Response Surface Methodology (RSM) the highest level of proteins integration into magnetosome membrane was achieved under the following parameters: pH 8.78, without adding NaCl and 55 s of vortexing for Mbb; pH 9.48, 323 mM NaCl and 55 s of vortexing for Mistbb. Modified magnetosomes with Mbb and Mistbb displayed on their surface demonstrated comparable levels of IgG-binding activity, suggesting that both proteins could be efficiently used as anchor molecules. We also demonstrated that such modified magnetosomes are stable in PBS buffer during at least two weeks. IgG-binding magnetosomes obtained by this approach could serve as a multifunctional platform for displaying various types of antibodies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Sodium Dodecyl Sulfate Modified Pyrrolidine-1-dithiocarboxylic acid Ammonium Coated Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb(II) from Water Samples

This paper describes the development of a procedure for Pb(II) ions removal from various water samples after magnetic solid phase extraction (MNPs) by magnetite nanoparticles (Fe3O4 NPs) modified with sodium dodecyl sulfate (SDS) and pyrrolidine-1-dithiocarboxylic acid ammonium (PDTCAA). The synthesis of Fe3O4 NPs was certified by characterization techniques including field emission scanning el...

متن کامل

Preparation of Sodium Dodecyl Sulfate Modified Pyrrolidine-1-dithiocarboxylic acid Ammonium Coated Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb(II) from Water Samples

This paper describes the development of a procedure for Pb(II) ions removal from various water samples after magnetic solid phase extraction (MNPs) by magnetite nanoparticles (Fe3O4 NPs) modified with sodium dodecyl sulfate (SDS) and pyrrolidine-1-dithiocarboxylic acid ammonium (PDTCAA). The synthesis of Fe3O4 NPs was certified by characterization techniques including field emission scanning el...

متن کامل

Design, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles

Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...

متن کامل

Optimization of Iron Oxide Nanoparticle Preparation for Biomedical Applications by Using Box-Behenken Design

Magnetic nanoparticles can bind to different drug delivery systems and can be used for drug targeting to a specific organ by using an external magnetic field as well as used in hyperthermia by heating in alternating magnetic fields. The characteristics of iron oxide nanoparticles are significantly affected by particle size, shape and zeta potential, among which the particle size plays the most ...

متن کامل

Preparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications

In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014